New Fusion Products For the Affine Kac-Moody Algebra $\widehat{\mathfrak{s l}}_{2}$ at Level $\kappa=1 / 2$.

Daniel Liu
Mentor: Dr. Claude Eicher

Primes Conference May 19, 2018

Lie Algebras

- Vector space \mathfrak{g} over \mathbb{C}, Lie Bracket $[\cdot, \cdot]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$

Lie Algebras

- Vector space \mathfrak{g} over \mathbb{C}, Lie Bracket $[\cdot, \cdot]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$
- Bilinear: $[x+y, z]=[x, z]+[y, z], \quad \alpha[x, y]=[\alpha x, y]$
- Anticommutative: $[x, y]=-[y, x]$
- Jacobi identity $[x,[y, z]]+[z,[x, y]]+[y,[z, x]]=0$

Lie Algebras

- Vector space \mathfrak{g} over \mathbb{C}, Lie Bracket $[\cdot, \cdot]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$
- Bilinear: $[x+y, z]=[x, z]+[y, z], \quad \alpha[x, y]=[\alpha x, y]$
- Anticommutative: $[x, y]=-[y, x]$
- Jacobi identity $[x,[y, z]]+[z,[x, y]]+[y,[z, x]]=0$

Example

- $\mathfrak{g l}_{n}(\mathbb{C}), n \times n$ complex matrices
- $[a, b]=a b-b a$

Example
Abelian Lie Algebras: $\mathfrak{g}=V$, a vector space, with $[\cdot, \cdot]=0$

Examples of Lie Algebras

Example
$\mathfrak{s l}_{2}(\mathbb{C}): 2 \times 2$ complex matrices with trace 0 .

$$
e=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), f=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \quad h=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

with

$$
[h, e]=2 e, \quad[h, f]=-2 f, \quad[e, f]=h
$$

Affine Kac-Moody Algebra $\widehat{\mathfrak{s}}_{2}$

- Vector space over \mathbb{C} with basis e_{n}, f_{n}, h_{n} and K for $n \in \mathbb{Z}$.

$$
\begin{aligned}
& {\left[h_{m}, e_{n}\right]=2 e_{m+n}, \quad\left[h_{m}, h_{n}\right]=2 m \delta_{m+n, 0} K} \\
& \quad\left[e_{m}, f_{n}\right]=-h_{m+n}-m \delta_{m+n, 0} K, \quad\left[h_{m}, f_{n}\right]=-2 f_{m+n} .
\end{aligned}
$$

Affine Kac-Moody Algebra $\widehat{\mathfrak{s}}_{2}$

- Vector space over \mathbb{C} with basis e_{n}, f_{n}, h_{n} and K for $n \in \mathbb{Z}$.

$$
\begin{aligned}
& {\left[h_{m}, e_{n}\right]=2 e_{m+n}, \quad\left[h_{m}, h_{n}\right]=2 m \delta_{m+n, 0} K} \\
& \quad\left[e_{m}, f_{n}\right]=-h_{m+n}-m \delta_{m+n, 0} K, \quad\left[h_{m}, f_{n}\right]=-2 f_{m+n} .
\end{aligned}
$$

- A representation at level $\kappa=\frac{1}{2}$ is a vector space V and a Lie algebra homomorphism $\rho: \widehat{\mathfrak{s l}}_{2} \rightarrow$ End (V) such that K acts by $\frac{1}{2}$ id.
- $\rho([x, y])=\rho(x) \rho(y)-\rho(y) \rho(x)$.
- $\rho(x)$ and $\rho(y)$ are linear maps $V: \rightarrow V$.

The Representations \mathcal{L}_{r}, for $r=0,1,2,3$

- $\mathrm{L}(r)$ is the finite dimensional irreducible $\mathfrak{s l}_{2}$-module of highest weight r. We have basis vectors $u_{r}, u_{r-2}, \ldots, u_{-r}$, such that

$$
f_{0} \cdot u_{k}=u_{k-2}
$$

- $\mathcal{U s l}_{2}^{-}$has basis of monomials
$\ldots f_{-n}^{a-n} e_{-n}^{b_{n}} h_{-n}^{c_{n}} f_{-n+1}^{a-n-1} e_{-n+1}^{b_{-n+1}} h_{-n+1}^{c_{-n+1}} \ldots$
- We form $\widehat{\mathcal{S l l}}_{2}^{-} \otimes \mathrm{L}(r)$ and this is an $\widehat{\mathfrak{s l}}_{2}$-module at level $\frac{1}{2}$. The zero grade subspace identifies with $\mathrm{L}(r)$.
- $\mathcal{U s I}_{2}{ }^{-} \otimes \mathrm{L}(r)$ has a maximal proper subrepresentation and \mathcal{L}_{r} is the quotient by it.

Singular Vectors

- A singular vector is a vector v in ${\mathcal{U s I _ { 2 }}}^{-} \otimes \mathrm{L}(r)$ such that $e_{n} \cdot v=0$ for all $n \geq 0$ and $f_{n} \cdot v=h_{n} \cdot v=0$ for all $n \geq 1$.
- For \mathcal{L}_{3}, we calculate the singular vector to be

$$
\left(-15 e_{-2}+6 e_{-1} h_{-1}\right) u_{3}+\left(-4 e_{-1}^{2}\right) u_{1} .
$$

- Will be necessary to describe fusion products later on.

The Representations $\mathcal{E}_{\Lambda, \alpha}$

- $\mathrm{R}(\Lambda, \alpha)$ is generated by $v_{\Lambda+2 \alpha}$.
- Like \mathcal{L}_{r} except with an infinite zero grade, consisting of $v_{\Lambda+2 \alpha+2 n}$ for $n \in \mathbb{Z}$.
- $\mathcal{E}_{\Lambda, \alpha}$ is the quotient of $\mathcal{U s l}_{2}^{-} \otimes \mathrm{R}(\Lambda, \alpha)$ by its maximal proper submodule.
- We consider only $\Lambda=\frac{3}{2}$ and $\frac{5}{2}$ with $\alpha= \pm \frac{1}{4}$.

The Representations $\mathcal{E}_{\Lambda, \alpha}$

- $\mathrm{R}(\Lambda, \alpha)$ is generated by $v_{\Lambda+2 \alpha}$.
- Like \mathcal{L}_{r} except with an infinite zero grade, consisting of $v_{\Lambda+2 \alpha+2 n}$ for $n \in \mathbb{Z}$.
- $\mathcal{E}_{\Lambda, \alpha}$ is the quotient of $\mathcal{U S I}_{2}^{-} \otimes \mathrm{R}(\Lambda, \alpha)$ by its maximal proper submodule.
- We consider only $\Lambda=\frac{3}{2}$ and $\frac{5}{2}$ with $\alpha= \pm \frac{1}{4}$.
- A relaxed singular vector is a vector $w \in \mathcal{E}_{\Lambda, \alpha}$ such that

$$
f_{n} \cdot w=e_{n} \cdot w=h_{n} \cdot w=0
$$

for all $n \geq 1$.

- For $\mathcal{E}_{\Lambda=5 / 2, \alpha}$, we calculate the relaxed singular vector to be

$$
\left(e_{-1} f_{0}-\alpha h_{-1}+\frac{2 \alpha}{2 \alpha+5} f_{-1} e_{0}\right) v_{\Lambda+2 \alpha} .
$$

Singular Vector Describing $\mathcal{E}_{3 / 2, \alpha}$

$$
\begin{aligned}
& e_{-3} f_{0}+\left(-\frac{4}{3} \alpha-\frac{2}{3}\right) h_{-3}+\frac{1+2 \alpha}{2(1+\alpha)(2+\alpha)} f_{-2} f_{-1} e_{0}^{2}+\frac{-\alpha-1 / 2}{\alpha+1} f_{-2} h_{-1} e_{0} \\
& +\left(\alpha+\frac{1}{2}\right) f_{-2} e_{-1}-\frac{1}{\alpha-\frac{1}{2}} e_{-2} e_{-1} f_{0}^{2}+e_{-2} h_{-1} f_{0} \\
& -\left(\alpha+\frac{1}{2}\right) e_{-2} f_{-1}-\frac{\frac{1}{2} \alpha+\frac{1}{4}}{\alpha+1} h_{-2} f_{-1} e_{0}-\frac{1}{2} h_{-2} e_{-1} f_{0} \\
& +\left(\frac{1}{2} \alpha+\frac{1}{4}\right) h_{-2} h_{-1}+\frac{1+2 \alpha}{12(1+\alpha)(2+\alpha)(3+\alpha)} f_{-1}^{3} e_{0}^{3}+\frac{1 / 2 \alpha+1 / 4}{\alpha+1} f_{-1}^{2} e_{-1} e_{0} \\
& -\frac{1+2 \alpha}{4(1+\alpha)(2+\alpha)} f_{-1}^{2} h_{-1} e_{0}^{2}+\frac{2}{3(-3+2 \alpha)(-1+2 \alpha)} e_{-1}^{3} f_{0}^{3}+\frac{1}{2} f_{-1} e_{-1}^{2} f_{0} \\
& -\frac{\frac{1}{2}}{\alpha-1 / 2} e_{-1}^{2} h_{-1} f_{0}^{2}-\frac{1}{6}\left(\alpha+\frac{1}{2}\right) h_{-1}^{3}+\frac{\frac{1}{2} \alpha+\frac{1}{4}}{\alpha+1} f_{-1} h_{-1}^{2} e_{0}+\frac{1}{2} e_{-1} h_{-1}^{2} f_{0}-\left(\alpha+\frac{1}{2}\right) f_{-1} e_{-1} h_{-}
\end{aligned}
$$

The Project: Computing Fusion Products

- Fusion is an interesting algebraic operation for $\widehat{\mathfrak{s l}}_{2}$-modules \mathcal{M} and \mathcal{N} at a fixed level that resembles the tensor product and has important applications in two-dimensional Conformal Field Theory.

The Project: Computing Fusion Products

- Fusion is an interesting algebraic operation for $\widehat{\mathfrak{s l}}_{2}$-modules \mathcal{M} and \mathcal{N} at a fixed level that resembles the tensor product and has important applications in two-dimensional Conformal Field Theory.
- The fusion product $\mathcal{M} \times \mathcal{N}$ is another $\widehat{\mathfrak{s l}}_{2}$-module at this level and $(\mathcal{K} \times \mathcal{M}) \times \mathcal{N} \cong \mathcal{K} \times(\mathcal{M} \times \mathcal{N})$ and $\mathcal{M} \times \mathcal{N} \cong \mathcal{N} \times \mathcal{M}$ holds. We have $\mathcal{L}_{0} \times \mathcal{M} \cong \mathcal{M}$.
- It has been analyzed at positive integral level.
- Our project is to compute fusion products in the new case of modules at level $\frac{1}{2}$. (Ridout: $\kappa=-\frac{1}{2}$, Gaberdiel: $\kappa=-4 / 3$.)

Definition of Fusion Products

- Fusion product $\mathcal{M} \times \mathcal{N}$ is a quotient of $\mathcal{M} \otimes \mathcal{N}$.
- For $J=e, f$, or h, the action of J_{n}, denoted $\Delta\left(J_{n}\right)$, is given by the following rules:

$$
\begin{aligned}
& \mathrm{n} \geq 0 \quad \Delta\left(J_{n}\right):=\sum_{m=0}^{n}\binom{n}{m} J_{m} \otimes 1+1 \otimes J_{n} \\
& \mathrm{n} \geq 1 \quad \Delta\left(J_{-n}\right):=\sum_{m=0}^{\infty}\binom{n+m-1}{m}(-1)^{m} J_{m} \otimes 1+1 \otimes J_{-n}
\end{aligned}
$$

Definition of Fusion Products

- Fusion product $\mathcal{M} \times \mathcal{N}$ is a quotient of $\mathcal{M} \otimes \mathcal{N}$.
- For $J=e, f$, or h, the action of J_{n}, denoted $\Delta\left(J_{n}\right)$, is given by the following rules:

$$
\begin{aligned}
& \mathrm{n} \geq 0 \quad \Delta\left(J_{n}\right):=\sum_{m=0}^{n}\binom{n}{m} J_{m} \otimes 1+1 \otimes J_{n} \\
& \mathrm{n} \geq 1 \quad \Delta\left(J_{-n}\right):=\sum_{m=0}^{\infty}\binom{n+m-1}{m}(-1)^{m} J_{m} \otimes 1+1 \otimes J_{-n}
\end{aligned}
$$

- The goal is to decompose these fusion products into direct sums. For example, representations \mathcal{L}_{r} and $\mathcal{E}_{\Lambda, \alpha}$ that we already know may appear.

Fusion to Grade Zero

- Focus only on the zero grade of the representations \mathcal{M}, \mathcal{N}.
- Do this by setting all negative-grade expressions e_{-n}, f_{-n}, h_{-n} to zero.
- We use an algorithm to convert any $v \otimes w$ into zero-grade vectors:

If $v=J_{-n} v^{\prime}$ for some $n>0$, then $v \otimes w=-(-1)^{n} v^{\prime} \otimes J_{0} w$. If $w=J_{-n} w^{\prime}$ for some $n>0$, then $v \otimes w=-J_{0} v \otimes w^{\prime}$.

Fusion to Grade Zero

- Focus only on the zero grade of the representations \mathcal{M}, \mathcal{N}.
- Do this by setting all negative-grade expressions e_{-n}, f_{-n}, h_{-n} to zero.
- We use an algorithm to convert any $v \otimes w$ into zero-grade vectors:

$$
\begin{aligned}
& \text { If } v=J_{-n} v^{\prime} \text { for some } n>0 \text {, then } v \otimes w=-(-1)^{n} v^{\prime} \otimes J_{0} w . \\
& \text { If } w=J_{-n} w^{\prime} \text { for some } n>0 \text {, then } v \otimes w=-J_{0} v \otimes w^{\prime} .
\end{aligned}
$$

- By the above algorithm, singular vectors describing \mathcal{M} and \mathcal{N} give rise to vectors which must be set to 0 in the tensor product of the zero grades of \mathcal{M} and \mathcal{N}.

Results of Fusion to Grade Zero

Theorem

1. $\mathcal{L}_{3} \times \mathcal{L}_{3}=\mathcal{L}_{0}$
2. $\mathcal{L}_{3} \times \mathcal{L}_{2}=\mathcal{L}_{1}$
3. $\mathcal{L}_{3} \times \mathcal{L}_{1}=\mathcal{L}_{2}$
4. $\mathcal{L}_{2} \times \mathcal{L}_{2}=\mathcal{L}_{2} \oplus \mathcal{L}_{0}$
5. $\mathcal{L}_{2} \times \mathcal{L}_{1}=\mathcal{L}_{3} \oplus \mathcal{L}_{1}$
6. $\mathcal{L}_{1} \times \mathcal{L}_{1}=\mathcal{L}_{2} \oplus \mathcal{L}_{0}$.
7. $\mathcal{E}_{5 / 2,1 / 4} \times \mathcal{L}_{3}=\mathcal{E}_{5 / 2,-1 / 4}$
8. $\mathcal{E}_{5 / 2,1 / 4} \times \mathcal{L}_{2}=\mathcal{E}_{3 / 2,-1 / 4}$
9. $\mathcal{E}_{5 / 2,1 / 4} \times \mathcal{L}_{1}=\mathcal{E}_{3 / 2,1 / 4}$
10. $\mathcal{E}_{3 / 2,1 / 4} \times \mathcal{L}_{3}=\mathcal{E}_{3 / 2,-1 / 4}$
11. $\mathcal{E}_{3 / 2,1 / 4} \times \mathcal{L}_{2}=\mathcal{E}_{3 / 2,1 / 4} \oplus \mathcal{E}_{5 / 2,-1 / 4}$
12. $\mathcal{E}_{3 / 2,1 / 4} \times \mathcal{L}_{1}=\mathcal{E}_{3 / 2,-1 / 4} \oplus \mathcal{E}_{5 / 2,1 / 4}$.

Future Goals

- We are working on zero grade fusion of $\mathcal{E}_{\Lambda, \alpha}$ with $\mathcal{E}_{\Lambda^{\prime}, \alpha^{\prime}}$.
- Compute fusion products to higher grades, since grade zero cannot fully describe fusion of $\mathcal{E}_{\Lambda, \alpha}$ with $\mathcal{E}_{\Lambda^{\prime}, \alpha^{\prime}}$.
- Compute the full fusion products.
- See if the fusion operation closes on the representations we work with, which is important for conformal field theory.

Acknowledgements

Many thanks to:

- My mentor, Dr. Claude Eicher
- MIT Math Department
- MIT PRIMES
- Prof. Pavel Etingof, Dr. Tanya Khovanova, Dr. Slava Gerovitch
- My parents

